Лабораторная работа 4.1.3 Рефрактометр Аббе

Яковлева Саша, группа 625

27 апреля 2018 г.

Цель работы: знакомство с методом измерения показателей преломления твердых и жидких сред в монохроматическом свете; определение показателей преломления нескольких стекол и жидкостей.

В работе используются технический рефрактометр Аббе, осветитель, набор стеклянных образцов, жидкости с неизвестными показателями преломления (глицерин и этиловый спирт), монобромнафталин, дистиллированная вода.

1 Понятие рефрактомерии

Основной формулой рефрактометрии является формула Лоренц-Лорентца, связывающая показатель преломления вещества n с числом его молекул N в единичном объеме и поляризуемостью α :

$$\frac{n^2 - 1}{n^2 + 2} = \frac{4\pi}{3} N\alpha \tag{1}$$

Свойства вещества характеризует удельная рефракция r:

$$r = \frac{1}{\rho} \frac{n^2 - 1}{n^2 + 2} \tag{2}$$

Здесь ρ - плотность. При помощи формулы (1) выражение для r чистого вещества преобразуется следующим образом: $r=\frac{4\pi}{3}\frac{\alpha}{m_0}=const$, где m_0 - масса молекулы. Для химического соединения введено понятие молекулярной рефракции $R_M=Mr=$

Для химического соединения введено понятие молекулярной рефракции $R_M = Mr = 4\pi N_A \alpha/3$, где M - молекулярная масса, а для каждого его элемента - понятие атомной рефракции R = Ar, где A - атомная масса. Тогда ввиду аддитивности верна формула:

$$R_M = q_1 R_1 + q_2 R_2 + \dots = q_1 A_1 r_1 + q_2 A_2 r_2 + \dots$$
(3)

Здесь q_i - количество атомов i-ого элемента в составе молекулы.

В работе представленные выше формулы будут использованы для вычисления атомных рефракций элементов, составляющих известные соединения, и последующего определения показателя преломления "новых" образованных этими элементами веществ.

2 Принцип работы рефрактометра Аббе

Для измерения показателя преломления среды используется рефрактометр Аббе, действие которого основано на явлении полного внутреннего отражения. Рассмотрим падение света на границу сред (показатели преломления $n_2 > n_1$) со стороны менее оптически плотной среды. Из закона Снеллиуса следует: при увеличении угла падения ψ растет и угол φ , под которым распространяется свет в плотной среде. При угле падения $\psi = 90^{\circ}$ происходит только отражение:

$$\sin \varphi_{\rm np} = \frac{n_1}{n_2}$$

Угол φ_{np} называется предельным углом преломления; при движении света, наоборот, из более плотной среды φ_{np} называют углом полного внутреннего отражения. Рассматриваемое явление иллюстрирует рисунок 1.

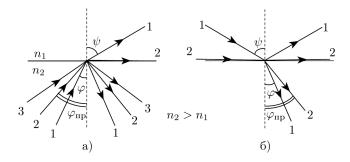


Рис. 1: Преломление света на границе раздела сред с разными показателями преломления

Таким образом, при освещении границы сред в более оптически плотной возникает резкая граница света-тени, на которую и настраивается рефрактометр.

Измерения проводятся по методу скользящего луча (свет падает из менее оптически плотной среды) и по методу полного внутреннего отражения (свет падает из более оптически плотной среды). Ход лучей в рефрактометре показан на рисунке 2 и 3 соответственно.

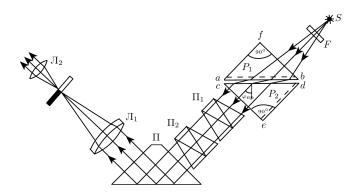


Рис. 2: Ход лучей в рефрактометре Аббе при измерении по методу скользящего луча

Стеклянные прямоугольные призмы P_1 и P_2 имеют большой показатель преломления; узкий зазор между ними служит для помещения исследуемой жидкости (при помощи пипетки) или стеклянной пластинки с неизвестным показателем преломления. В методе скользящего луча свет падает на грань bf, а в методе полного внутреннего отражения он с помощью зеркала направляется на грань cd. Свет рассеивается на матовой грани и, пройдя компенсатор, собирается линзой Π_1 , имеющей общую фокальную плоскость с линзой окуляра Π_2 . Вращением призм Π_2 добиваются попадания границы света-тени в поле зрения окуляра; значение показателя преломления отсчитывается по шкале на уровне границы.

Рабочие поверхности призм P_1 и P_2 легко повредить, поэтому при измерении показателя преломления стеклянных пластин поверхности покрывают монобромнафталином. Между измерениями пластины тщательно протираются.

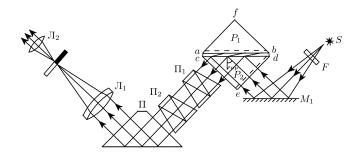


Рис. 3: Ход лучей в рефрактометре Аббе при измерении по методу полного внутреннего отражения

3 Измерение показателей преломления стеклянных пластин и некоторых жидкостей

Определим систематическую погрешность прибора и случайную ошибку отдельного измерения. Для этого проведем серию измерений известного показателя преломления дистиллированной воды $n_D=1,33291;$ они занесены в таблицу 1. Данные в первой строчке получены методом скользящего луча, во второй - методом полного внутреннего отражения. Приборная погрешность рефрактометра равна 0,0005.

Метод скользящего луча	1,3310	1,3300	1,3310	1,3305	1,3305	1,3300
Метод полного отражения	1,3290	1,3285	1,3290	1,3290	1,3295	1,3290

Таблица 1: Измерение показателя преломления дистиллированной воды

Для обоих методов максимальная разность двух показаний равна 0,001, следовательно, случайная ошибка σ_{rand} не превосходит приборную, и погрешность, складываемая из случайной и приборной ошибок, $\sigma \approx 0,0005$.

Будем писать индекс s, если величина измерена методов скользящего луча, и индекс r, если она получена методом полного отражения.

Среднее значение показателя преломления:

$$\langle n \rangle_s = 1.3305; \ \langle n \rangle_r = 1.3290$$

Средние значения отличаются от истинного n_D , и систематическая ошибка примерно равна разности истинного и экспериментально определенного значений:

$$\sigma_s = 0.0024; \ \sigma_r = 0.0039$$

Систематическая ошибка на порядок больше приборной и случайной. В дальнейшем для каждого измерения показателя преломления будем вносить необходимую поправку: прибавлять σ_s или σ_r . Погрешность "исправленного" примем равной σ .

Проведем измерения показателей преломления трех стеклянных образцов, глицерина и этилового спирта, построим таблицы, аналогичные 1:

• стеклянный образец №1

Метод скользящего луча	1,5130	1,5135	1,5135
Метод полного отражения	1,5135	1,5135	1,5135

Таблица 2: Измерение показателя преломления стеклянного образца №1

Измерения приведены в таблице 2.

С учетом поправки на систематический сдвиг, получим следующие показатели преломления:

$$n_s = 1.5157 \pm 0.0005$$
; $n_r = 1.5174 \pm 0.0005$

• стеклянный образец №2

Измерения приведены в таблице 3.

Метод скользящего луча	1,5145	1,5150	1,5150
Метод полного отражения	1,5150	1,5150	1,5150

Таблица 3: Измерение показателя преломления стеклянного образца №2

С учетом поправки на систематический сдвиг, получим следующие показатели преломления:

$$n_s = 1.5172 \pm 0.0005; \ n_r = 1.5189 \pm 0.0005$$

• стеклянный образец №3

Измерения приведены в таблице 4.

Метод скользящего луча	1,5145	1,5145	1,5150
Метод полного отражения	1,5140	1,5140	1,5140

Таблица 4: Измерение показателя преломления стеклянного образца №3

С учетом поправки на систематический сдвиг, получим следующие показатели преломления:

$$n_s = 1,5171 \pm 0,0005; \ n_r = 1,5179 \pm 0,0005$$

• глицерин $(C_3H_8O_3)$

Измерения приведены в таблице 5.

С учетом поправки на систематический сдвиг, получим следующие показатели преломления:

$$n_s = 1,4699 \pm 0,0005; \ n_r = 1,4712 \pm 0,0005$$

Метод скользящего луча	1,4675	1,4675	1,4675	1,4675
Метод полного отражения	1,4670	1,4675	1,4670	1,4675

Таблица 5: Измерение показателя преломления глицерина

• этиловый спирт (C_2H_6O) Измерения приведены в таблице 6.

Метод скользящего луча	1,3640	1,3620	1,3615	1,3610	1,3600	1,3600	1,3600	1,3600
Метод полного отражения	1,3600	1,3635	1,3605	1,3600	1,3590	1,3600	1,3590	1,3595

Таблица 6: Измерение показателя преломления этилового спирта

Первые четыре значения, измеренные по обоим методам, не учитываем при расчетах, так как показатель преломления уменьшается. Это можно объяснить следующим образом: на рабочей поверхности в начале измерений с этиловым спиртом остались следы веществ с более высоким показателем преломления с предыдущих опытов (глицерин).

С учетом поправки на систематический сдвиг, получим следующие показатели преломления:

$$n_s = 1,3624 \pm 0,0005; \ n_r = 1,3633 \pm 0,0005$$

4 Вычисление показателей преломления веществ по формулам рефрактометрии

Проведем подготовительные расчеты: для воды, глицерина и этилового спирта вычислим **молекулярную рефракцию** R_M и **поляризуемость молекулы** α , пользуясь формулами, указанными в 1 разделе отчета:

$$R_M = Mr = \frac{M}{\rho} \frac{n^2 - 1}{n^2 + 2} = \frac{4\pi}{3} N_A \alpha$$

Значения молекулярной массы M и плотности ρ возьмем из справочников; будем считать их точными. В качестве показателя преломления n подставим его среднее значение $\langle n \rangle$ среднее арифметическое из показателей, полученных методами скользящего луча и полного внутреннего отражения. Вычисления приведены в таблице 7. Погрешности величин сосчитаны в соответствии с правилами.

Пользуясь аддитивностью (4), запишем молекулярные рефракции воды, глицерина и этилового спирта через атомные рефракции элементов:

$$\begin{cases} R_{H_2O} = 2R_H + R_O, \\ R_{C_3H_8O_3} = 3R_C + 8R_H + 3R_O \\ R_{C_2H_6O} = 2R_C + 6R_H + R_O \end{cases}$$

Решив эту систему, получим выражения для атомных рефракций:

Соединение	M, г/моль	ρ , Γ/cm^3	< n >	$r, \mathrm{cm}^3/\Gamma$
Вода	18,02	0,998	1,3329	0,2061
Глицерин	92,09	1,26	1,4705	0,2217
Этиловый спирт	46,07	0,789	1,3628	0,2817
Соединение	R_M , см $^3/$ моль	ΔR_M , см $^3/$ моль	α , 10^{-24} cm^3	$\Delta \alpha, 10^{-24} \text{ cm}^3$
Вода	3,713	0,003	1,447	0,002
Глицерин	20,411	0,014	8,121	0,006
Этиловый спирт	12,978	0,010	5,164	0,004

Таблица 7: Вычисление молекулярных рефракций различных соединений

$$R_C = (2.32 \pm 0.04) \text{ см}^3/\text{моль}$$

 $R_H = (1.16 \pm 0.05) \text{ см}^3/\text{моль}$
 $R_O = (1.40 \pm 0.06) \text{ см}^3/\text{моль}$

Зная атомные рефракции углерода, водорода и кислорода, а также молекулярную рефракцию воды, получим молекулярные рефракции метилового спирта (CH_4O) , льда (H_2O) и алмаза (C), а затем и показатели преломления этих веществ, пользуясь теми же формулами:

$$R_M = Mr = \frac{M}{\rho} \frac{n^2 - 1}{n^2 + 2} = q_1 R_1 + q_2 R_2 + \dots = q_1 A_1 r_1 + q_2 A_2 r_2 + \dots$$
$$r\rho = \frac{n^2 - 1}{n^2 + 2} \leftrightarrow n = \sqrt{\frac{2r\rho + 1}{1 - r\rho}}$$

Соответствующие вычисления приведены в таблице 8.

Соединение	R_M , см $^3/$ моль	M, г/моль	ρ , Γ/cm^3	$r\rho$, cm ³ / Γ	Δr , cm ³ / Γ	n	Δn
Метиловый спирт	8,35	32,04	0,79	0,207	0,004	1,33	0,03
Лед	3,713	18,02	0,91	0,18813	0,00014	1,3020	0,0013
Алмаз	2,32	12,07	3,25	0,625	0,011	2,45	0,08

Таблица 8: Вычисление молекулярных рефракций различных соединений и их показателей преломления

Вывод: 1) в работе оценена систематическая погрешность рефрактометра; проведены измерения показателей преломления трех стеклянных пластин, глицерина и этилового спирта. Без поправки на ошибку прибора в большинстве измерений метод полного отражения дает меньшие значения, однако после учета систематического сдвига показатель преломления вещества по методу полного отражения, наоборот, больше. Однако n_s и n_r отличаются не больше, чем на 0.1%, и с хорошей точностью совпадают со справочными данными. 2) Рассчитаны молекулярные рефракции имеющихся соединений и атомные рефракции их составляющих; поляризуемость веществ. Из соображений аддитивности рефракции, получены значения молекулярной массы и показателя преломления для метанола, льда и алмаза. Ошибка в расчетах составляет не более 2%.