Лабораторная работа 4.4.1 Амплитудная дифракционная решетка

Яковлева Саша, группа 625

11 мая 2018 г.

Цель работы: знакомство с работой гониометра и определение спектральных характеристик амплитудной решетки.

В работе используются ртутная лампа, гониометр, амплитудная дифракционная решетка, плоскопараллельная пластинка, призменный уголковый отражатель, щель с микрометрическим винтом.

Амплитудную решетку можно представлять как непрозрачный экран, на котором прорезаны штрихи ширины b с периодом d. С помощью настроенной на бесконечность трубы на ней наблюдается дифракция Фраунгофера, причем интенсивность дифрагированного света максимальна для направлений φ_m (отсчитываются от нормали):

$$d\sin\varphi_m = m\lambda\tag{1}$$

Здесь *m* - целое число, называемое порядком спектра. Дифракция проиллюстрирована на рисунке 1.

Рис. 1: Дифракция световых волн на решетке

Амплитудная решетка, как и любой другой спектральный прибор, описывается рядом величин.

Угловая дисперсия *D* характеризует угловое расстояние между близкими спектральными линиями и равна:

$$D(\lambda) = \frac{d\varphi}{d\lambda}$$

С учетом выражения (1) для угловой дисперсии амплитудной решетки верно:

$$D = \frac{d\varphi}{d\lambda} = \frac{m}{d\cos\varphi} = \frac{m}{\sqrt{d^2 - m^2\lambda^2}}$$
(2)

Разрешающая способность R отвечает наименьшему значению разности длин волн $\delta\lambda$, измеримой данным прибором:

$$R = \frac{\lambda}{\delta\lambda}$$

Рассмотрим падение света на решетку, состоящую из N штрихов. При достаточном уменьшении размера щели уменьшается интенсивность, а ширина линий остается неизменной достигается предел ширины линии. Определим угловое расстояние $\delta \varphi$ - полуширину линии. Две волны погасят друг друга (минимум интенсивности), если их разность хода отличается на λ/N . Из этого соображения и с учетом выражения (1) имеем:

$$d\sin(\varphi_m + \delta\varphi) = m\lambda + \lambda/N$$

При $\delta \varphi \ll 1$ получим:

$$\delta\varphi = \frac{\lambda}{Nd\cos\varphi_m} \tag{3}$$

В то же время, угловое расстояние между двумя линиями определяется дисперсией:

$$\Delta \varphi \approx D\delta \lambda = \frac{m}{d\cos\varphi_m} \cdot \delta \lambda \tag{4}$$

Руководствуясь критерием Релея, приравняем полуширину линии $\delta \varphi$ и расстояние между двумя соседними $\Delta \varphi$:

$$\frac{\lambda}{Nd\cos\varphi_m} = \frac{m}{d\cos\varphi_m} \cdot \delta\lambda \to \frac{\lambda}{\delta\lambda} = Nm$$
$$R = \frac{\lambda}{\delta\lambda} = Nm \tag{5}$$

В работе для измерения углов используется гониометр, принципиальная схема которого показана на рисунке 2. Его настройка проводится в соответствии с дополнительным описанием.

Рис. 2: Схема экспериментальной установки (вид сверху)

1 Исследование спектра ртутной лампы

Проведем юстировку гониометра; установим начало отсчета углов на $180^{\circ}01'00''$ для предохранения винта. Расположим исследуемую решетку (N = 100 штрих/см) на столике так, чтобы ее плоскость была перпендикулярна оси зрительной трубы. Ширину входной щели подберем следующим образом: ширина линий желтого дублета чуть больше двойного штриха окулярной шкалы. Отрегулируем высоту щели.

Наблюдаемый спектр в целом совпадает с указанным в справочниках спектром лампы ДРШ, однако, синюю линию не видно. Уже во втором порядке замечено наложение линий одного цвета на линии другого.

Измерим угловые координаты спектральных линий ртути φ_m в $m = \pm 1$ порядках; они занесены в таблицу 1 с учетом поправки на сдвинутое относительно нуля начало отсчета. Погрешность измерения угла примем равной 2".

На основании таблицы 1 построим график зависимости $\sin \varphi_m(\lambda)$, где λ - длина волны соответствующий линии, взятая из справочных данных. Он показан на рисунке 3. Черным

маркером обозначены измерения линий в порядке m = 1, а незакрашенным - в m = -1. Экспериментальные точки хорошо ложатся на прямую, что соответствует теоретической зависимости (1). Профитируем график, учитывая точки от обоих порядков и тем самым усредняя полученные значения.

Определим период решетки
 dиз коэффициента наклона графика
 $b=(8,93\pm0,15)\cdot10^{-5}~1/{\rm hm}:$

$$d = rac{\lambda}{\sin arphi} = 1/b = (11, 19 \pm 0, 19)$$
 мкм

В действительности d = 10 мкм.

Спектральные линии ртути порядка $m = 1$							
Цвет	λ , HM	φ_m, \circ	φ, \prime	$\varphi_m, "$	$\sin \varphi$	$\Delta \sin \varphi$	
Фиолетовый	404,7	2	31	37	0,0441	0,0004	
Зеленый	546,1	3	9	49	0,0552	0,0004	
Желтый 2	577,0	3	20	10	0,0582	0,0003	
Желтый 1	579,1	3	21	3	0,0585	0,0003	
Красный 2	623,4	3	36	25	0,0629	0,0003	
Красный 1	690,7	3	59	43	0,0697	0,0003	
Спектральные линии ртути порядка $m = -1$							
Фиолетовый	404,7	2	33	22	0,0252	0,0008	
Зеленый	546,1	3	12	46	0,0486	0,0004	
Желтый 2	577,0	3	22	6	0,0459	0,0004	
Желтый 1	579,1	3	23	19	0,0456	0,0004	

Таблица 1: Зависимость синуса угловой координаты линии ртути от длины ее волны

2 Определение дисперсии в спектрах разного порядка

Измерим угловые координаты φ_m линий желтого дублета для нескольких видимых порядков спектра m. По ним восставим величину $\delta \varphi$ - угловое расстояние между между «желтый 1» и «желтый 2» - и рассчитаем угловую дисперсию $D = \delta \varphi / \delta \lambda$. Данные занесены в таблицу 2. Длины волн линий в дублете различаются на известную величину $\delta \lambda = 2,1$ нм.

m	$\delta \varphi, '$	$\delta \varphi$, "	$D, 1/{ m hm}$	$\Delta D, 1/$ нм
1	0	53	0,000122	0,000009
-1	0	47	0,000109	0,000009
-2	1	41	0,000233	0,000009
-3	2	3	0,000284	0,000009
-4	3	20	0,000462	0,000009

Таблица 2: Зависимость угловой дисперсии от порядка спектра D(m)

На основании таблицы 2 на рисунке 4 нанесены экспериментальные точки в координатах D(m), величина m взята по модулю.

Рис. 3: График зависимости синуса угловой координаты линии ртути от длины ее волны

Проверим визуально, насколько полученные данные отвечают теоретической зависимости (2). Для этого построим на графике 4 кривые по формуле (2) для среднего значения длины волны желтого дублета $\lambda = 578$ нм, настоящего периода решетки $d_r = 10$ нм (черная кривая) и вычисленного в пункте 1 $d_e \approx 11$ нм (пунктирная кривая). Видно, что кривая $d_r = 10$ нм лучше проходит через точки.

3 Оценка разрешающей способности прибора

Оценим, во сколько раз больше расстояние между линиями желтого дублета $\Delta \varphi$, чем ширина линии $\delta \varphi$ для конкретного порядка спектра *m*. Величины $\Delta \varphi$ взяты из таблицы 2 в радианах, по ним и измеренному отношению $\Delta \varphi / \delta \varphi$ восстановлены искомые значения ширины линии в таблице 3.

m	$\Delta \varphi / \delta \varphi$	$\Delta \varphi, \cdot 10^{-6}$	$\delta \varphi, \cdot 10^{-6}$	$D, 1/{ m Hm}$	$\delta\lambda$, нм	$\Delta\delta\lambda$, нм
1	4	228	57,0	0,000109	$0,\!53$	0,06
2	6	490	81,6	0,000233	$0,\!35$	0,02
3	10	596	$59,\!6$	0,000284	0,21	0,02
m	$R, \cdot 10^3$	$\Delta R, \cdot 10^3$	$N, \cdot 10^3$	$\Delta N, \cdot 10^3$	<i>L</i> , см	ΔL , см
$\frac{m}{1}$	$\begin{array}{c} R, \ \cdot 10^3 \\ 1,10 \end{array}$	$\begin{array}{c} \Delta R, \ \cdot 10^3 \\ 0,13 \end{array}$	$N, \cdot 10^3$ 1,10	$\frac{\Delta N, \cdot 10^3}{0,13}$	<i>L</i> , см 11,0	ΔL , CM 1,3
$\begin{array}{c} m \\ 1 \\ 2 \end{array}$	$ \begin{array}{r} R, \cdot 10^3 \\ \hline 1,10 \\ 1,65 \\ \end{array} $	$ \begin{array}{c} \Delta R, \cdot 10^{3} \\ 0,13 \\ 0,12 \end{array} $			<i>L</i> , см 11,0 8,3	$\Delta L, \text{ cm} = 1,3 = 0,6$

Таблица 3: Расчет характеристик установки

Рис. 4: График зависимости угловой дисперсии от порядка спектра

С учетом поправок на различия в расстоянии между линиями желтого дублета и их шириной, по формуле (4) для каждого порядка спектра m рассчитаем разрешимый спектральный интервал: $\delta \lambda = \delta \varphi / D$. Погрешность величин указана в соответствии с правилом погрешности произведения.

Зная среднюю длину волны желтой линии $\lambda = 578$ нм, легко оценить разрешающую способность: $R = \lambda/\delta\lambda$. Вычисления приведены в таблице 3. По формуле (5) получено эффективное работающих число штрихов на решетке N и эффективная длина L работающей поверхности решетки как L = N/100, где 100 - известный параметр установки, количество штрихов на сантиметр.

Вывод: 1) в работе проведено исследование спектра ртутной лампы, измерены угловые координаты спектра и построена зависимость синуса координаты линии от ее длины волны в первом порядке. По графику найден период решетки d, отличающийся на 10% от действительного. 2) Определена угловая дисперсия в спектрах разного порядка. Полученный разброс значений плохо соотносится с теоретической зависимостью дисперсии от порядка спектра. 3) Рассчитаны следующие характеристики установки: разрешимый спектральный интервал, разрешающая способность, эффективное количество штрихов решетки. Погрешность определения порядка 10%.

Величины, полученные по экспериментальным данным отличаются от истинных, так как установка требует аккуратного обращения с ней.