Лабораторная работа 4.6.2 Туннелирование миллиметровых радиоволн

Яковлева Саша, группа 625

15 марта 2018 г.

Цель работы: экспериментальное исследование эффекта проникновения электромагнитных волн - туннелирования - через воздушный зазор между диэлектрическими призмами при полном внутреннем отражении; моделирование интерферометра Майкельсона и измерение длины волны излучения, показателя преломления фторопласта для радиоволн миллиметрового диапазона.

В работе используются генератор СВЧ-колебаний с рупорной антенной, приемная антенна и волновод, детектор, микроамперметр, металлические зеркала, две призмы и плоскопараллельная пластина фторопласта, микрометрические винты.

Рассмотрим преломление и отражение волны на границы двух сред. Индекс 1 относится к падающей волне, 2 - к преломленной. Иллюстрация приведена на рисунке 1. Предполагаем, что во второй среде волна неоднородная.

Рис. 1: Преломление и отражение волны на границе двух диэлектриков

В случае прохождения волны из более плотной среды и менее плотную при угле падения φ_{cr} возникает эффект полного внутреннего отражения:

$$\sin\varphi_{cr} = \frac{n_2}{n_1} = \frac{k_2}{k_1}$$

Если угол падение превышает предельный, то верно: $k_1 \sin \varphi_1 > k_1 \sin \varphi_{cr} = k_2$. Из граничных условий (равенство тангенсальных составляющих волны) следует: $k_1 \sin \varphi_1 = k_{2x}$, k_{2x} - проекция волнового вектора k_2 на ось x. Отсюда $k_{2x} > k_2 = \sqrt{k_{2x}^2 + k_{2z}^2}$. Получаем выражение для k_{2z} :

$$k_{2z} = \pm i\sqrt{k_{2x}^2 - k_2^2} = \pm i\sqrt{k_1^2 \sin^2 \varphi_1 - k_2^2} = \pm i\varkappa$$

Здесь коэффициент $\varkappa = \sqrt{k_1^2 \sin^2 \varphi_1 - k_2^2}.$

Тогда интенсивность экспоненциально затухающей волны изменяется с расстоянием вдоль оси z по закону:

 $I \sim e^{-z/\Lambda}$

Здесь введен коэффициент $\Lambda = 1/2\varkappa = \frac{1}{2\sqrt{k_1^2 \sin_{\varphi_1}^2 - k_2^2}} = \frac{1}{2k_2\sqrt{n^2 \sin^2 \varphi_1 - 1}} = \frac{\lambda_2}{4\pi\sqrt{n^2 \sin^2 \varphi_1 - 1}}.$

В данной работе вторая среда является тонкой воздушной прослойкой между пластинами. При полном внутреннем отражении на границе диэлектрик-воздух неоднородная волна проходит в прослойку и с меньшей интенсивностью достигает второй пластины, где далее распространяется как однородная. Этот эффект называется **туннелированием**.

1 Исследование туннелирования радиоволн

Схема установки показана на рисунке 2. Миллиметровые радиоволны излучаются генератором и с помощью антенны A_1 излучаются в пространство. На пути радиоволн установлены две призмы Π_1 и Π_2 из фторопласта, ограничивающие воздушную прослойку, ширина которой регулируется микроскопическими винтами M_1 и M_2 . Антенна A_2 принимает радиоволны; детектор D подсоединен к микроамперметру, ток, регистрируемый прибором, пропорционален интенсивности излучения. Положение I соответствует принятию сигнала, прошедшего через прослойку воздуха, а II - сигнала, отраженного на границе раздела сред.

Рис. 2: Схема установки для исследования туннелирования миллиметровых радиоволн

С увеличением ширины прослойки *l* интенсивность падает монотонно.

Снимем зависимость интенсивности от l для прошедшего воздушную прослойку сигнала на частоте $\nu = (36,75\pm0,03)$ ГГц. Измерения занесены в таблицу 1. Погрешность определения ширины прослойки l примем равной цене деления микрометрического винта 0,02 мм, а погрешность показаний амперметра - 0,02 мкА в соответствии с паспортом прибора. В таблице 1 также содержатся отношения интенсивностей при данной ширине зазора к максимальной коэффициент преломления: $T = J/J_{max}$. Погрешность этой величины оценим сверху - 0,004, эта оценка соответствует честным расчетам.

Аналогичная зависимость интенсивности от ширины зазора для отраженной волны содержится в таблице 2. Коэффициент отражения R равен J/J_{max} .

l, mm	0,00	0,50	1,60	1,80	2,20	2,60	2,80	3,00	3,20	3,40
J, MKA	7,90	7,85	7,30	6,90	6,10	5,40	4,85	4,40	3,90	3,50
Т	1,000	0,994	0,924	0,873	0,772	0,684	0,614	0,557	0,494	0,443
<i>l</i> , мм	3,20	3,00	2,80	2,60	2,40	2,20	1,80	1,60	0,50	0,00
J, MKA	3,30	3,30	3,30	3,50	3,90	4,70	5,20	5,80	7,50	7,80
Т	0,418	0,418	0,418	0,443	0,494	0,595	0,658	0,734	0,949	0,987

Таблица 1: Измерение зависимости интенсивности прошедшей через зазор волны от ширины воздушного зазора

l, mm	7,20	7,00	5,00	4,60	4,20	3,60	3,20	2,80	
J, MKA	7,80	7,50	7,70	7,50	7,20	6,60	6,00	5,20	
R	1,000	0,962	0,987	0,962	0,923	0,846	0,769	0,667	
l, mm	2,60	2,40	2,30	2,20	2,10	1,95	1,90	1,85	
J, MKA	5,10	4,60	4,20	4,10	4,00	3,60	3,45	3,10	
R	0,654	0,590	0,538	0,526	0,513	0,462	0,442	0,397	
<i>l</i> , мм	1,80	1,65	1,30	1,10	0,90	0,80	0,60	0,50	0,20
<i>J</i> , мкА	2,90	2,80	1,50	1,40	0,80	0,50	0,40	0,20	0,00
R	0,372	0,359	0,192	0,179	0,103	0,064	0,051	0,026	0,000

Таблица 2: Измерение зависимости интенсивности отраженной волны от ширины воздушного зазора

Рис. 3: Графики зависимости коэффициентов T и Rот величины зазораl

На рисунке 3 показаны графики зависимостей T(l) и R(l). Для получения зависимости для прошедшей волны применялось фитирование функцией вида Ae^{Bl} , как того требует теория, а для получения зависимости для отраженной волны: $1 - Ce^{Dl}$. Также представлена сумма коэффициентов T(l) + R(l), теоретически эта сумма неизменна и равна единице, однако экспериментальная кривая лежит строго выше. Фитирование выполнено с помощью программного пакета ROOT.

По таблице 1 и графику 3 можно видеть, что при показаниях микрометра от 3,20 до 2,80 мм и от 0,00 до 0,50 мм значение T не изменялось. Это соответствует обнаруженному холостому ходу микрометрического винта длиной примерно 0,8 мм. В последующей обработке данных будет рассматривать только увеличение щели при измерениях для прошедшей волны.

Получим зависимость $\ln(T) = f(l)$, где l - показания микрометра. Согласно теории, эта график зависимости должен быть прямой линией. Расчеты проведены на основе таблицы 1 и занесены в таблицу 3. Абсолютная погрешность $\ln(T)$, как известно, равна относительной погрешности аргумента T; примем ее равной для всех значений 0,004.

<i>l</i> , мм	0,00	0,50	1,60	1,80	2,20	2,60	2,80	3,00	3,20	3,40
$\ln(T)$	0,000	-0,006	-0,079	-0,135	-0,259	-0,380	-0,488	-0,585	-0,706	-0,814

Таблица 3: Измерение логарифмической зависимости коэффициента прошедшей волны от показаний винта микрометра $\ln(T)(l)$

При построении графика искомой зависимости не будем учитывать первые две точки. График зависимости представлен на рисунке 4. Прямая проведена в соответствии с методом наименьших квадратов, ее коэффициенты и их погрешности отражены на графике.

Рис. 4: График зависимости коэффициента прошедшей волны от показаний винта микрометра $\ln(T)(l)$

Определим по наклону прямой на рисунке 4 коэффициент затухания волны Λ и показатель преломления фторопласта n.

Согласно теории, зависимость интенсивности от показаний микрометрического винта lэкспоненциальная: $I = I_0 e^{-\frac{l}{\Lambda}}$. Тогда зависимость для коэффициента T, как уже было замечено выше, имеет вид: $T = e^{-\frac{l-l_{max}}{\Lambda}} = T_0 e^{-\frac{l}{\Lambda}}$, где l_{max} - показания для нормировочного коэффициента I_{max} . В свою очередь, $\ln(T) = -T_0 \frac{l}{\Lambda}$. Причем коэффициент перед экспонентой известен из фитирования (см. рисунок 3) и равен $T_0 \approx 1,11$. Тогда коэффициент наклона -bэкспериментальной зависимости на рисунке 4 равен, согласно теории, T_0/Λ . Относительная погрешность Λ совпадает с относительной погрешностью b. Таким образом, для коэффициента затухания волны имеем:

$$\Lambda = (2,77 \pm 0,14)$$
 мм

$$\Lambda = \frac{\lambda_2}{4\pi\sqrt{n^2\sin^2\varphi_1 - 1}} \to n\sin\varphi_1 = \left(\frac{\lambda_2}{4\pi\Lambda}\right)^2 + 1$$

Здесь $\lambda_2 = 0,6$ мкм - длина электромагнитной волны в воздухе. Таким образом, $\lambda_2 \ll \Lambda$ и $n \sin \varphi_1 \approx 1$. Из геометрии схемы установки (изображена на рисунке 2) $\varphi_1 \approx 45^{\circ}$. Отсюда найдем коэффициент преломления фторопласта:

$$n \approx 1/\sin \varphi_1 = 1,4$$

Полученный коэффициент преломления с хорошей точностью совпадает с табличным значением, что свидетельствует о грамотной обработке данных.

2 Интерферометр Майкельсона

Небольшая реконструкция схемы, показанной на рисунке 2, помогает позволяет смоделировать интерферометр Майкельсона. Однако в процессе выполнения лабораторной работы произошла ошибка и была собрана схема, отличная от схемы интерферометра, но позволяющая по заданному алгоритму определить параметры установки. Эта схема изображена на рисунке 5.

Рис. 5: Схема установки для применения интерференционного метода

Для измерения показателя преломления фторопласта между неподвижным зеркалом и призмой устанавливается пластинка из фторопласта толщины *h*.

Разность хода лучей отличается от разности в интерферометре Майкельсона и составляет:

$$\Delta = 2h(n+1) + 2\delta x + L$$

Здесь δx - сдвиг подвижного зеркала, а L - общая оптическая длина дополнительного пути внутри призм.

Снимем зависимость тока J от координаты x подвижного зеркала без помещенной пластины. Абсолютные погрешности величин равны погрешностям аналогичных измерений в первой части работы. Измерения занесены в таблицу 4.

х, мм	55,00	55,50	56,00	56,50	57,00	57,50	57,62	57,83	57,94	58,16	58,31
J, MKA	2,90	4,50	6,10	7,20	7,90	7,10	6,50	5,50	5,00	4,00	2,85
х, мм	58,50	$58,\!65$	59,00	$59,\!15$	59,40	59,80	60,20	60,70	61,00	61,40	
<i>J</i> , мкА	1,45	0,80	2,10	3,10	4,10	5,00	6,10	7,00	7,20	7,00	

Таблица 4: Измерение зависимости интенсивности от координаты подвижного зеркала x

На основе таблицы 4 построен график зависимости J(x) на рисунке 6. Для наглядности экспериментальные точки соединены кривой.

Рис. 6: График зависимости показаний амперметра от Jот координаты подвижного зеркала \boldsymbol{x}

Проанализируем график данные на рисунке 6. Для получения следующего максимума подвижное зеркало нужно было подвинуть на величину $\Delta x \approx 4$ мм. Длина хода луча при этом возросла на 8 мм. Значит, длина волны $\lambda \approx 8$ мм.

Ошибку разумно принять равной 0,2 мм, так как максимумы размыты.

Рассчитаем длину волны по рабочей частоте генератора $\nu=(36,75\pm0,03)$ ГГц: $\lambda=c/\nu\approx8,16$ мм.

Длина электромагнитной волны, определенная экспериментально, с хорошей точностью совпадает с более точно полученным значением.

Поместим между неподвижным зеркалом и призмой, тем самым еще увеличив разность хода на 2h(n-1), для данной установки - h = 6,2 мм. Будем отодвигать подвижное зеркало и следить за координатами его, соответствующих последовательным максимумам интенсивности (тока), погрешность в таком измерении микрометрическим винтом по-прежнему считаем равной 0,5 мм:

$$x_m: 61, 0 \to x_{m+1}: 62, 4$$

Разность координат $\Delta x_p = 1,4 \pm 0,2$ мм при наличии пластины отличается от расстоянием между максимумами в ее отсутствии на $\Delta = 2,6 \pm 0,6$ мм. Эту величину и компенсирует прирост хода в пластине. Получим следующее выражение для показателя преломления фторопласта:

$$\Delta = h(n-1) \to n = \frac{\Delta}{h} + 1 = 1.4 \pm 0.3$$

В пределах погрешности это значение совпадает с значением, определенным в первой части работы по туннелированию, и с табличным значением.

Вывод: в работе исследован эффект туннелирования; найден коэффициент преломления материала призм - фторопласта - двумя методами: туннелирования и интерференционным; вычислена длина волны излучения. Результаты не очень точны: ошибка измерений составила около 20%, хотя по среднему значению они близки к настоящим значениям. Это можно объяснить неполадками установки (был обнаружен холостой ход измерительного винта), сложностью определения максимума интерференции.