На сегодня в физике атмосферного грозового разряда существует множество неразгаданных тайн. Ключевая из них - проблема инициализации молнии: несмотря на то, что динамика формирования молнии детально изучена, не известно, как начинается процесс развития молниевого разряда. Для начала формирования молнии необходим электрический пробой внутри грозового облака, однако наблюдаемые в атмосфере электрические поля на целый порядок меньше пробойных полей.
Ещё один необъяснённый феномен атмосферного электричества - гамма-всплески, наблюдаемые с 1994 года космическими гамма-обсерваториями (например, BATSE, Fermi), созданными для наблюдения гамма-излучения астрофизических источников. Загадочное природное гамма-излучение земной атмосферы получило название гамма-вспышек земного проихождения (Terrestrial Gamma-ray Flashes, TGFs). Оно примечательно своей короткой длительностью (порядка сотни микросекунд) и высокой интенсивностью гамма-излучения. Построение непротиворечивой модели TGF является одной из ключевых задач для современных учёных.
Рисунок 1. Гамма телескоп Fermi.
Рисунок 2. Terrestrial Gamma-ray Flashes согласно NASA.
Многолетнее наблюдение TGF позволило установить, что, по-видимому, в основе этого природного явления лежит ускорение релятивистских электронов в электрических полях грозовых облаков. Оказывается, в грозовых облаках возможно формирование такого крупномасштабного электрического поля, которое способно ускорять электроны сильнее, чем они тормозятся при взаимодействии с атмосферным воздухом. Это явление было предсказано российским учёным А.В. Гуревичем в 1992 году. Релятивистские электроны, ускоряемые электрическим полем, называются убегающими, а минимальное электрическое поле, при котором убегание электронов возможно, называется критическим. Убегающие электроны, взаимодействуя с молекулами воздуха, выбивают новые электроны, которые также могут стать убегающими. Этот процесс приводит к формированию лавины убегающих электронов (Рисунок 3). Затравочные частицы для таких лавин рождаются вторичными космическими лучами. Лавины убегающих электронов при взаимодействии с воздухом создают тормозное гамма-излучение. Спектральный анализ TGF показал, что именно явление убегания релятивистских электронов в грозовых облаках является наиболее вероятным источником земных гамма-вспышек. Тем не менее, построение модели TGF требует более глубокого изучения физики лавин убегающих электронов.
Рисунок 3. Моделирование лавин убегающих электронов на Geant4. Красные треки частиц - электроны, зелёные - гамма-излучение, синие - позитроны.
Гамма-излучение грозовых облаков наблюдается не только из космоса. Существует множество наземных обсерваторий, изучающих это природное явление. Одна из них - станция Арагатц на одноимённой горе в Армении. Исследования на станции проводятся Отделом космических лучей (Cosmic Ray Division) Ереванского Физического института, под руководством А. Чилингаряна. Высокогорное расположение экспериментального комплекса удобно для исследования грозовых облаков, так как они проходят на высоте в сто и менее метров над экспериментальными установками. Важной для грозовой физики особенностью этого экспериментального комплекса является его расположение всего в ста метрах от высоты грозовых облаков. Это позволяет получать важные экспериментальные данные по атмосферному гамма-излучению. Явление, наблюдаемое на горе Арагатц, получило название Thunderstorm Gamma Enhancement (TGE). Его длительность, по сравнению с TGF, большая, порядка 30 минут. Анализ данных по наблюдению TGE показал, что он, в основном, состоит из гамма-изучения распада дочерних ядер радона, поднимающихся вместе с аэрозолями за счёт электрического поля между поверхностью земли и грозой. Это мягкая компонента TGE, энергия гамма квантов мягкой компоненты не превышает 3 МэВ. Однако периодически в TGE возникают мощные потоки жёсткой компоненты гамма-излучения, энергия которого достигает 100 МэВ. Длительность таких вспышек составляет порядка 100 милисекунд, как правило, они прерываются разрядом молнии. Надёжно установлено, что источником жёсткой компоненты TGE являются лавины убегающих электронов, ускоряемых грозовыми электрическими полями.
Рисунок 4. Экспериментальный комплекс на горе Арагатц.
Рисунок 5. High Energy Atmospheric Physics согласно Cosmic Ray Division. В основе гамма-излучения, наблюдаемого во время грозы, лежит ускорение релятивистских электронов в грозовых облаках (жёсткая компонента), а также радиоактивный распад дочерних ядер радона (мягкая компонента).
Изучение динамики лавин убегающих электронов не ограничивается исследованием их гамма-излучения. Потоки релятивистских электронов также вызывают повышеный уровень ионизации внутри грозового облака. Повышенная ионизация может оказать значительный вклад в процессы формирования стримеров и лидеров, лежащие в основе инициации молнии. Кроме того, грозовые облака являются источником УКВ излучения. Для регистрации ультракоротких волн станция Арагатц оснащена интерферометром. Предполагается, что релятивистские частицы также способны вызвать процессы, приводящие к УКВ излучению. Изучение плазменных процессов, связанных с ионизацией убегающих электронов, в совокупности с анализом данных УКВ интерферометров позволит пролить свет на неизведанные явления атмосферной физики.
Рисунок 6. Антенны УКВ интерферометра, расположенного на горе Арагатц.